Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements.
نویسندگان
چکیده
We have fabricated nanometer-sized channels, demonstrated a technique for the introduction of liquid into the channels, and carried out time-resolved fluorescence measurements of aqueous solutions. In this study, 330-nm- and 850-nm-sized channels were fabricated on fused-silica substrates by fast atom beam etching and hydrofluoric acid bonding methods. A liquid introduction method utilizing capillary action was demonstrated. The liquid introduction was observed under an optical microscope, and the liquid velocity during the introduction was analyzed by surface energy and macroscale hydrodynamics. The liquid velocity due to capillary action in the nanometer-sized channel seemed more than four times slower than the estimation. Then, aqueous solutions of rhodamine 6G (R6G), sulforhodamine 101 (SR101), and rhodamine B (RB) in the channels were measured by time-resolved fluorescence spectroscopy; spectra of the same solution in a 250-microm-sized channel were also measured as a reference for the macrospace. Although the fluorescence spectra in the 330-nm-, 850-nm- and 250-microm-sized channels agreed with one another, the fluorescent decays in the nanometer-sized channels were faster for R6G and SR101 and slower for RB than the respective decays in the 250-microm-sized channels. The results suggested the solutions had lower dielectric constants and higher viscosities in the nanometer-sized channels.
منابع مشابه
Fabrication and Characterization of Nanofluidics Device Using Fused Silica for Single Protein Molecule Detection
Fabrication of nanofluidic devices was carried out and the devices were characterized. These devices will be used to trap, manipulate and detect single protein molecules in nanometer size channels in a laser fluorescence spectroscopy process to investigate dynamical and photophysical behavior of single molecules. On the substrate of fused silica (SiO2) glass wafers, Electron Beam Lithography (E...
متن کاملDeep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis.
Deep UV fluorescence detection at 266-nm excitation wavelength has been realized for sensitive detection in microchip electrophoresis. For this purpose, an epifluorescence setup was developed enabling the coupling of a deep UV laser into a commercial fluorescence microscope. Deep UV laser excitation utilizing a frequency quadrupled pulsed laser operating at 266 nm shows an impressive performanc...
متن کاملFlexible and in situ fabrication of nanochannels with high aspect ratios and nanopillar arrays in fused silica substrates utilizing focused ion beam
Nanochannels fabricated in fused silica substrates are ideal tools for single (bio)molecular studies in biology and are promising in the development of innovative applications in chemistry. To obtain a higher throughput and a higher level of integration and functionalization, nanochannels with high aspect ratios and nano-in-nano structures are very much desired, but their fabrication is a chall...
متن کاملFluorescence spectroscopy of individual semiconductor nanoparticles in different ethylene glycols.
The optical properties of single colloidal semiconductor nanoparticles (NPs) are considerably influenced by the direct environment of the NPs. Here, the influence of different liquid and solid glycol matrices on CdSe-based NPs is investigated. Since the fluorescence of individual NPs varies from one NP to another, it is highly desirable to study the very same individual NPs in different matrice...
متن کاملPlastic microchip electrophoresis for analysis of PCR products of hepatitis C virus.
BACKGROUND Electrophoresis on polymeric rather than glass microstructures is a promising separation method for analytical chemistry. Assays on such devices need to be explored to allow assessment of their utility for the clinical laboratory. METHODS We compared capillary and plastic microchip electrophoresis for clinical post-PCR analysis of hepatitis C virus (HCV). For capillary electrophore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 74 24 شماره
صفحات -
تاریخ انتشار 2002